
@BenBalter (http://twitter.com/benbalter)
government@github.com

(mailto:government@github.com)
ben.balter.com/collaborative-policymaking

(http://ben.balter.com/collaborative-
policymaking)

Creation distinct from publication

High barrier to collaboration
Everyone for themselves

Share as late as possible, if at all
Us/them dichotomy, outsiders as liability

What’s a wheel? :see_no_evil:

Discussions happen in private (:e-mail:,

hallway)
Changes made opaquely, manually

Organization knowledge stored in people
Low fidelity (memory, :bus: factor, :watch:)

:calendar:, blockers as a sunk cost

Whereas
 the
 parties
 agree
 to
 as
 follows:

0.
Heretofor this agreement is made and entered into as 17 September 2013 (“Effective Date”), by and

between Disclosing Party Name, (“the Disclosing Party”) and Recipient Name, (“the Recipient”) (collectively,

“the Parties”).

1.
Notwithstanding, for purposes of this Agreement, “Confidential Information” shall mean any and all non-

public information, including, without limitation, technical, developmental, marketing, sales, operating,

performance, cost, know-how, business plans, business methods, and process information, disclosed to

the Recipient…

Whereas
 the
 parties
 agree
 to
 as
 follows:

0.
Heretofor this agreement is made and entered into as 17 September 2013 (“Effective Date”), by and

between Disclosing Party Name, (“the Disclosing Party”) and Recipient Name, (“the Recipient”) (collectively,

“the Parties”).

1.
Notwithstanding, for purposes of this Agreement, “Confidential Information” shall mean any and all non-

public information, including, without limitation, technical, developmental, marketing, sales, operating,

performance, cost, know-how, business plans, business methods, and process information, disclosed to

the Recipient…

Server Publish Contribute → Republish
 ↓ ↑

You Consume → Modify → Patch

Inconsistent
Error prone
Complex

Doesn’t
 scale

How to Get Your Change Into the Linux Kernel
or

Care And Operation Of Your Linus Torvalds

For a person or company who wishes to submit a change to the Linux
kernel, the process can sometimes be daunting if you're not familiar
with "the system." This text is a collection of suggestions which
can greatly increase the chances of your change being accepted.

Read Documentation/SubmitChecklist for a list of items to check
before submitting code. If you are submitting a driver, also read

Documentation/SubmittingDrivers.

--
SECTION 1 - CREATING AND SENDING YOUR CHANGE
--

1) "diff -up"

Use "diff -up" or "diff -uprN" to create patches.

All changes to the Linux kernel occur in the form of patches, as
generated by diff(1). When creating your patch, make sure to create it
in "unified diff" format, as supplied by the '-u' argument to diff(1).
Also, please use the '-p' argument which shows which C function each
change is in - that makes the resultant diff a lot easier to read.

Patches should be based in the root kernel source directory,
not in any lower subdirectory.

To create a patch for a single file, it is often sufficient to do:

SRCTREE= linux-2.6
MYFILE= drivers/net/mydriver.c

cd $SRCTREE
cp $MYFILE $MYFILE.orig

vi $MYFILE # make your change
cd ..

diff -up $SRCTREE/$MYFILE{.orig,} > /tmp/patch

To create a patch for multiple files, you should unpack a "vanilla",
or unmodified kernel source tree, and generate a diff against your

own source tree. For example:

MYSRC= /devel/linux-2.6

tar xvfz linux-2.6.12.tar.gz
mv linux-2.6.12 linux-2.6.12-vanilla

diff -uprN -X linux-2.6.12-vanilla/Documentation/dontdiff \
linux-2.6.12-vanilla $MYSRC > /tmp/patch

"dontdiff" is a list of files which are generated by the kernel during
the build process, and should be ignored in any diff(1)-generated

patch. The "dontdiff" file is included in the kernel tree in
2.6.12 and later.

Make sure your patch does not include any extra files which do not
belong in a patch submission. Make sure to review your patch -after-

generated it with diff(1), to ensure accuracy.

If your changes produce a lot of deltas, you may want to look into
splitting them into individual patches which modify things in

logical stages. This will facilitate easier reviewing by other
kernel developers, very important if you want your patch accepted.

There are a number of scripts which can aid in this:

Quilt:
http://savannah.nongnu.org/projects/quilt

Andrew Morton's patch scripts:
http://userweb.kernel.org/~akpm/stuff/patch-scripts.tar.gz

Instead of these scripts, quilt is the recommended patch management
tool (see above).

2) Describe your changes.

Describe the technical detail of the change(s) your patch includes.

Be as specific as possible. The WORST descriptions possible include
things like "update driver X", "bug fix for driver X", or "this patch

includes updates for subsystem X. Please apply."

The maintainer will thank you if you write your patch description in a
form which can be easily pulled into Linux's source code management

system, git, as a "commit log". See #15, below.

If your description starts to get long, that's a sign that you probably
need to split up your patch. See #3, next.

When you submit or resubmit a patch or patch series, include the
complete patch description and justification for it. Don't just

say that this is version N of the patch (series). Don't expect the
patch merger to refer back to earlier patch versions or referenced
URLs to find the patch description and put that into the patch.

I.e., the patch (series) and its description should be self-contained.
This benefits both the patch merger(s) and reviewers. Some reviewers

probably didn't even receive earlier versions of the patch.

If the patch fixes a logged bug entry, refer to that bug entry by
number and URL.

3) Separate your changes.

Separate _logical changes_ into a single patch file.

For example, if your changes include both bug fixes and performance
enhancements for a single driver, separate those changes into two
or more patches. If your changes include an API update, and a new
driver which uses that new API, separate those into two patches.

On the other hand, if you make a single change to numerous files,
group those changes into a single patch. Thus a single logical change

is contained within a single patch.

If one patch depends on another patch in order for a change to be
complete, that is OK. Simply note "this patch depends on patch X"

in your patch description.

If you cannot condense your patch set into a smaller set of patches,
then only post say 15 or so at a time and wait for review and integration.

4) Style check your changes.

Check your patch for basic style violations, details of which can be
found in Documentation/CodingStyle. Failure to do so simply wastes

the reviewers time and will get your patch rejected, probably
without even being read.

At a minimum you should check your patches with the patch style
checker prior to submission (scripts/checkpatch.pl). You should

be able to justify all violations that remain in your patch.

5) Select e-mail destination.

Look through the MAINTAINERS file and the source code, and determine
if your change applies to a specific subsystem of the kernel, with
an assigned maintainer. If so, e-mail that person. The script

scripts/get_maintainer.pl can be very useful at this step.

If no maintainer is listed, or the maintainer does not respond, send
your patch to the primary Linux kernel developer's mailing list,

linux-kernel@vger.kernel.org. Most kernel developers monitor this
e-mail list, and can comment on your changes.

Do not send more than 15 patches at once to the vger mailing lists!!!

Linus Torvalds is the final arbiter of all changes accepted into the
Linux kernel. His e-mail address is <torvalds@linux-foundation.org>.

He gets a lot of e-mail, so typically you should do your best to -avoid-
sending him e-mail.

Patches which are bug fixes, are "obvious" changes, or similarly
require little discussion should be sent or CC'd to Linus. Patches
which require discussion or do not have a clear advantage should
usually be sent first to linux-kernel. Only after the patch is

discussed should the patch then be submitted to Linus.

6) Select your CC (e-mail carbon copy) list.

Unless you have a reason NOT to do so, CC linux-kernel@vger.kernel.org.

Other kernel developers besides Linus need to be aware of your change,

so that they may comment on it and offer code review and suggestions.
linux-kernel is the primary Linux kernel developer mailing list.

Other mailing lists are available for specific subsystems, such as
USB, framebuffer devices, the VFS, the SCSI subsystem, etc. See the

MAINTAINERS file for a mailing list that relates specifically to
your change.

Majordomo lists of VGER.KERNEL.ORG at:
<http://vger.kernel.org/vger-lists.html>

If changes affect userland-kernel interfaces, please send
the MAN-PAGES maintainer (as listed in the MAINTAINERS file)
a man-pages patch, or at least a notification of the change,
so that some information makes its way into the manual pages.

Even if the maintainer did not respond in step #5, make sure to ALWAYS
copy the maintainer when you change their code.

For small patches you may want to CC the Trivial Patch Monkey
trivial@kernel.org which collects "trivial" patches. Have a look

into the MAINTAINERS file for its current manager.
Trivial patches must qualify for one of the following rules:

Spelling fixes in documentation
Spelling fixes which could break grep(1)

Warning fixes (cluttering with useless warnings is bad)
Compilation fixes (only if they are actually correct)

Runtime fixes (only if they actually fix things)
Removing use of deprecated functions/macros (eg. check_region)

Contact detail and documentation fixes
Non-portable code replaced by portable code (even in arch-specific,

since people copy, as long as it's trivial)
Any fix by the author/maintainer of the file (ie. patch monkey

in re-transmission mode)

7) No MIME, no links, no compression, no attachments. Just plain text.

Linus and other kernel developers need to be able to read and comment
on the changes you are submitting. It is important for a kernel

developer to be able to "quote" your changes, using standard e-mail
tools, so that they may comment on specific portions of your code.

For this reason, all patches should be submitting e-mail "inline".
WARNING: Be wary of your editor's word-wrap corrupting your patch,

if you choose to cut-n-paste your patch.

Do not attach the patch as a MIME attachment, compressed or not.
Many popular e-mail applications will not always transmit a MIME
attachment as plain text, making it impossible to comment on your

code. A MIME attachment also takes Linus a bit more time to process,
decreasing the likelihood of your MIME-attached change being accepted.

Exception: If your mailer is mangling patches then someone may ask
you to re-send them using MIME.

See Documentation/email-clients.txt for hints about configuring
your e-mail client so that it sends your patches untouched.

8) E-mail size.

When sending patches to Linus, always follow step #7.

Large changes are not appropriate for mailing lists, and some
maintainers. If your patch, uncompressed, exceeds 300 kB in size,
it is preferred that you store your patch on an Internet-accessible
server, and provide instead a URL (link) pointing to your patch.

9) Name your kernel version.

It is important to note, either in the subject line or in the patch
description, the kernel version to which this patch applies.

If the patch does not apply cleanly to the latest kernel version,
Linus will not apply it.

10) Don't get discouraged. Re-submit.

After you have submitted your change, be patient and wait. If Linus
likes your change and applies it, it will appear in the next version

of the kernel that he releases.

However, if your change doesn't appear in the next version of the
kernel, there could be any number of reasons. It's YOUR job to

narrow down those reasons, correct what was wrong, and submit your
updated change.

It is quite common for Linus to "drop" your patch without comment.
That's the nature of the system. If he drops your patch, it could be

due to
* Your patch did not apply cleanly to the latest kernel version.

* Your patch was not sufficiently discussed on linux-kernel.
* A style issue (see section 2).

* An e-mail formatting issue (re-read this section).
* A technical problem with your change.

* He gets tons of e-mail, and yours got lost in the shuffle.
* You are being annoying.

When in doubt, solicit comments on linux-kernel mailing list.

11) Include PATCH in the subject

Due to high e-mail traffic to Linus, and to linux-kernel, it is common
convention to prefix your subject line with [PATCH]. This lets Linus
and other kernel developers more easily distinguish patches from other

e-mail discussions.

12) Sign your work

To improve tracking of who did what, especially with patches that can
percolate to their final resting place in the kernel through several
layers of maintainers, we've introduced a "sign-off" procedure on

patches that are being emailed around.

The sign-off is a simple line at the end of the explanation for the
patch, which certifies that you wrote it or otherwise have the right to
pass it on as an open-source patch. The rules are pretty simple: if you

can certify the below:

Developer's Certificate of Origin 1.1

By making a contribution to this project, I certify that:

(a) The contribution was created in whole or in part by me and I
have the right to submit it under the open source license

indicated in the file; or

(b) The contribution is based upon previous work that, to the best
of my knowledge, is covered under an appropriate open source

license and I have the right under that license to submit that
work with modifications, whether created in whole or in part

by me, under the same open source license (unless I am
permitted to submit under a different license), as indicated

in the file; or

(c) The contribution was provided directly to me by some other
person who certified (a), (b) or (c) and I have not modified

it.

(d) I understand and agree that this project and the contribution
are public and that a record of the contribution (including all
personal information I submit with it, including my sign-off) is
maintained indefinitely and may be redistributed consistent with

this project or the open source license(s) involved.

then you just add a line saying

Signed-off-by: Random J Developer <random@developer.example.org>

using your real name (sorry, no pseudonyms or anonymous contributions.)

Some people also put extra tags at the end. They'll just be ignored for
now, but you can do this to mark internal company procedures or just

point out some special detail about the sign-off.

If you are a subsystem or branch maintainer, sometimes you need to slightly
modify patches you receive in order to merge them, because the code is not
exactly the same in your tree and the submitters'. If you stick strictly to

rule (c), you should ask the submitter to rediff, but this is a totally
counter-productive waste of time and energy. Rule (b) allows you to adjust
the code, but then it is very impolite to change one submitter's code and
make him endorse your bugs. To solve this problem, it is recommended that
you add a line between the last Signed-off-by header and yours, indicating
the nature of your changes. While there is nothing mandatory about this, it

seems like prepending the description with your mail and/or name, all
enclosed in square brackets, is noticeable enough to make it obvious that

you are responsible for last-minute changes. Example :

Signed-off-by: Random J Developer <random@developer.example.org>
[lucky@maintainer.example.org: struct foo moved from foo.c to foo.h]

Signed-off-by: Lucky K Maintainer <lucky@maintainer.example.org>

This practise is particularly helpful if you maintain a stable branch and
want at the same time to credit the author, track changes, merge the fix,

and protect the submitter from complaints. Note that under no circumstances
can you change the author's identity (the From header), as it is the one

which appears in the changelog.

Special note to back-porters: It seems to be a common and useful practise
to insert an indication of the origin of a patch at the top of the commit

message (just after the subject line) to facilitate tracking. For instance,
here's what we see in 2.6-stable :

Date: Tue May 13 19:10:30 2008 +0000

SCSI: libiscsi regression in 2.6.25: fix nop timer handling

commit 4cf1043593db6a337f10e006c23c69e5fc93e722 upstream

And here's what appears in 2.4 :

Date: Tue May 13 22:12:27 2008 +0200

wireless, airo: waitbusy() won't delay

[backport of 2.6 commit b7acbdfbd1f277c1eb23f344f899cfa4cd0bf36a]

Whatever the format, this information provides a valuable help to people
tracking your trees, and to people trying to trouble-shoot bugs in your

tree.

13) When to use Acked-by: and Cc:

The Signed-off-by: tag indicates that the signer was involved in the
development of the patch, or that he/she was in the patch's delivery path.

If a person was not directly involved in the preparation or handling of a
patch but wishes to signify and record their approval of it then they can

arrange to have an Acked-by: line added to the patch's changelog.

Acked-by: is often used by the maintainer of the affected code when that
maintainer neither contributed to nor forwarded the patch.

Acked-by: is not as formal as Signed-off-by:. It is a record that the acker
has at least reviewed the patch and has indicated acceptance. Hence patch
mergers will sometimes manually convert an acker's "yep, looks good to me"

into an Acked-by:.

Acked-by: does not necessarily indicate acknowledgement of the entire patch.
For example, if a patch affects multiple subsystems and has an Acked-by: from
one subsystem maintainer then this usually indicates acknowledgement of just

the part which affects that maintainer's code. Judgement should be used here.
When in doubt people should refer to the original discussion in the mailing

list archives.

If a person has had the opportunity to comment on a patch, but has not
provided such comments, you may optionally add a "Cc:" tag to the patch.

This is the only tag which might be added without an explicit action by the
person it names. This tag documents that potentially interested parties

have been included in the discussion

14) Using Reported-by:, Tested-by:, Reviewed-by: and Suggested-by:

If this patch fixes a problem reported by somebody else, consider adding a
Reported-by: tag to credit the reporter for their contribution. Please

note that this tag should not be added without the reporter's permission,
especially if the problem was not reported in a public forum. That said,

if we diligently credit our bug reporters, they will, hopefully, be
inspired to help us again in the future.

A Tested-by: tag indicates that the patch has been successfully tested (in
some environment) by the person named. This tag informs maintainers that
some testing has been performed, provides a means to locate testers for

future patches, and ensures credit for the testers.

Reviewed-by:, instead, indicates that the patch has been reviewed and found
acceptable according to the Reviewer's Statement:

Reviewer's statement of oversight

By offering my Reviewed-by: tag, I state that:

(a) I have carried out a technical review of this patch to
evaluate its appropriateness and readiness for inclusion into

the mainline kernel.

(b) Any problems, concerns, or questions relating to the patch
have been communicated back to the submitter. I am satisfied

with the submitter's response to my comments.

(c) While there may be things that could be improved with this
submission, I believe that it is, at this time, (1) a

worthwhile modification to the kernel, and (2) free of known
issues which would argue against its inclusion.

(d) While I have reviewed the patch and believe it to be sound, I
do not (unless explicitly stated elsewhere) make any

warranties or guarantees that it will achieve its stated
purpose or function properly in any given situation.

A Reviewed-by tag is a statement of opinion that the patch is an
appropriate modification of the kernel without any remaining serious

technical issues. Any interested reviewer (who has done the work) can
offer a Reviewed-by tag for a patch. This tag serves to give credit to

reviewers and to inform maintainers of the degree of review which has been
done on the patch. Reviewed-by: tags, when supplied by reviewers known to
understand the subject area and to perform thorough reviews, will normally

increase the likelihood of your patch getting into the kernel.

A Suggested-by: tag indicates that the patch idea is suggested by the person
named and ensures credit to the person for the idea. Please note that this

tag should not be added without the reporter's permission, especially if the
idea was not posted in a public forum. That said, if we diligently credit our

idea reporters, they will, hopefully, be inspired to help us again in the
future.

15) The canonical patch format

The canonical patch subject line is:

Subject: [PATCH 001/123] subsystem: summary phrase

The canonical patch message body contains the following:

- A "from" line specifying the patch author.

- An empty line.

- The body of the explanation, which will be copied to the
permanent changelog to describe this patch.

- The "Signed-off-by:" lines, described above, which will
also go in the changelog.

- A marker line containing simply "---".

- Any additional comments not suitable for the changelog.

- The actual patch (diff output).

The Subject line format makes it very easy to sort the emails
alphabetically by subject line - pretty much any email reader will
support that - since because the sequence number is zero-padded,

the numerical and alphabetic sort is the same.

The "subsystem" in the email's Subject should identify which
area or subsystem of the kernel is being patched.

The "summary phrase" in the email's Subject should concisely
describe the patch which that email contains. The "summary

phrase" should not be a filename. Do not use the same "summary
phrase" for every patch in a whole patch series (where a "patch
series" is an ordered sequence of multiple, related patches).

Bear in mind that the "summary phrase" of your email becomes a
globally-unique identifier for that patch. It propagates all the way
into the git changelog. The "summary phrase" may later be used in

developer discussions which refer to the patch. People will want to
google for the "summary phrase" to read discussion regarding that
patch. It will also be the only thing that people may quickly see
when, two or three months later, they are going through perhaps

thousands of patches using tools such as "gitk" or "git log
--oneline".

For these reasons, the "summary" must be no more than 70-75
characters, and it must describe both what the patch changes, as well
as why the patch might be necessary. It is challenging to be both
succinct and descriptive, but that is what a well-written summary

should do.

The "summary phrase" may be prefixed by tags enclosed in square
brackets: "Subject: [PATCH tag] <summary phrase>". The tags are not
considered part of the summary phrase, but describe how the patch

should be treated. Common tags might include a version descriptor if
the multiple versions of the patch have been sent out in response to
comments (i.e., "v1, v2, v3"), or "RFC" to indicate a request for

comments. If there are four patches in a patch series the individual
patches may be numbered like this: 1/4, 2/4, 3/4, 4/4. This assures
that developers understand the order in which the patches should be
applied and that they have reviewed or applied all of the patches in

the patch series.

A couple of example Subjects:

Subject: [patch 2/5] ext2: improve scalability of bitmap searching
Subject: [PATCHv2 001/207] x86: fix eflags tracking

The "from" line must be the very first line in the message body,
and has the form:

From: Original Author <author@example.com>

The "from" line specifies who will be credited as the author of the
patch in the permanent changelog. If the "from" line is missing,

then the "From:" line from the email header will be used to determine
the patch author in the changelog.

The explanation body will be committed to the permanent source
changelog, so should make sense to a competent reader who has long
since forgotten the immediate details of the discussion that might

have led to this patch. Including symptoms of the failure which the
patch addresses (kernel log messages, oops messages, etc.) is

especially useful for people who might be searching the commit logs
looking for the applicable patch. If a patch fixes a compile failure,
it may not be necessary to include _all_ of the compile failures; just
enough that it is likely that someone searching for the patch can find
it. As in the "summary phrase", it is important to be both succinct as

well as descriptive.

The "---" marker line serves the essential purpose of marking for patch
handling tools where the changelog message ends.

One good use for the additional comments after the "---" marker is for
a diffstat, to show what files have changed, and the number of

inserted and deleted lines per file. A diffstat is especially useful
on bigger patches. Other comments relevant only to the moment or the
maintainer, not suitable for the permanent changelog, should also go
here. A good example of such comments might be "patch changelogs"

which describe what has changed between the v1 and v2 version of the
patch.

If you are going to include a diffstat after the "---" marker, please
use diffstat options "-p 1 -w 70" so that filenames are listed from
the top of the kernel source tree and don't use too much horizontal

space (easily fit in 80 columns, maybe with some indentation).

See more details on the proper patch format in the following
references.

16) Sending "git pull" requests (from Linus emails)

Please write the git repo address and branch name alone on the same line
so that I can't even by mistake pull from the wrong branch, and so

that a triple-click just selects the whole thing.

So the proper format is something along the lines of:

"Please pull from

git://jdelvare.pck.nerim.net/jdelvare-2.6 i2c-for-linus

to get these changes:"

so that I don't have to hunt-and-peck for the address and inevitably
get it wrong (actually, I've only gotten it wrong a few times, and
checking against the diffstat tells me when I get it wrong, but I'm

just a lot more comfortable when I don't have to "look for" the right
thing to pull, and double-check that I have the right branch-name).

Please use "git diff -M --stat --summary" to generate the diffstat:
the -M enables rename detection, and the summary enables a summary of

new/deleted or renamed files.

With rename detection, the statistics are rather different [...]
because git will notice that a fair number of the changes are renames.

SECTION 2 - HINTS, TIPS, AND TRICKS

This section lists many of the common "rules" associated with code
submitted to the kernel. There are always exceptions... but you must
have a really good reason for doing so. You could probably call this

section Linus Computer Science 101.

1) Read Documentation/CodingStyle

Nuff said. If your code deviates too much from this, it is likely
to be rejected without further review, and without comment.

One significant exception is when moving code from one file to
another -- in this case you should not modify the moved code at all in

the same patch which moves it. This clearly delineates the act of
moving the code and your changes. This greatly aids review of the
actual differences and allows tools to better track the history of

the code itself.

Check your patches with the patch style checker prior to submission
(scripts/checkpatch.pl). The style checker should be viewed as
a guide not as the final word. If your code looks better with

a violation then its probably best left alone.

The checker reports at three levels:
- ERROR: things that are very likely to be wrong

- WARNING: things requiring careful review
- CHECK: things requiring thought

You should be able to justify all violations that remain in your
patch.

2) #ifdefs are ugly

Code cluttered with ifdefs is difficult to read and maintain. Don't do
it. Instead, put your ifdefs in a header, and conditionally define
'static inline' functions, or macros, which are used in the code.

Let the compiler optimize away the "no-op" case.

Simple example, of poor code:

dev = alloc_etherdev (sizeof(struct funky_private));
if (!dev)

return -ENODEV;
#ifdef CONFIG_NET_FUNKINESS

init_funky_net(dev);
#endif

Cleaned-up example:

(in header)
#ifndef CONFIG_NET_FUNKINESS

static inline void init_funky_net (struct net_device *d) {}
#endif

(in the code itself)
dev = alloc_etherdev (sizeof(struct funky_private));

if (!dev)
return -ENODEV;

init_funky_net(dev);

3) 'static inline' is better than a macro

Static inline functions are greatly preferred over macros.
They provide type safety, have no length limitations, no formatting

limitations, and under gcc they are as cheap as macros.

Macros should only be used for cases where a static inline is clearly
suboptimal [there are a few, isolated cases of this in fast paths],
or where it is impossible to use a static inline function [such as

string-izing].

'static inline' is preferred over 'static __inline__', 'extern inline',
and 'extern __inline__'.

4) Don't over-design.

Don't try to anticipate nebulous future cases which may or may not
be useful: "Make it as simple as you can, and no simpler."

SECTION 3 - REFERENCES

Andrew Morton, "The perfect patch" (tpp).
<http://userweb.kernel.org/~akpm/stuff/tpp.txt>

Jeff Garzik, "Linux kernel patch submission format".
<http://linux.yyz.us/patch-format.html>

Greg Kroah-Hartman, "How to piss off a kernel subsystem maintainer".
<http://www.kroah.com/log/linux/maintainer.html>

<http://www.kroah.com/log/linux/maintainer-02.html>
<http://www.kroah.com/log/linux/maintainer-03.html>
<http://www.kroah.com/log/linux/maintainer-04.html>
<http://www.kroah.com/log/linux/maintainer-05.html>

NO!!!! No more huge patch bombs to linux-kernel@vger.kernel.org people!
<http://marc.theaimsgroup.com/?l=linux-kernel&m=112112749912944&w=2>

Kernel Documentation/CodingStyle:
<http://users.sosdg.org/~qiyong/lxr/source/Documentation/CodingStyle>

Linus Torvalds's mail on the canonical patch format:
<http://lkml.org/lkml/2005/4/7/183>

Andi Kleen, "On submitting kernel patches"
Some strategies to get difficult or controversial changes in.

http://halobates.de/on-submitting-patches.pdf

--

Author Publishes ← Author Reviews
↓ ↑

Collaborator
Modifies → Community

Discusses

Simple
Open

Standardized
Scales

Anyone is encouraged to contribute to the project by forking (https://help.github.com/articles/fork-a-repo)

and submitting a pull request.

(If you are new to GitHub, you might start with a basic tutorial (https://help.github.com/articles/set-up-git).)

Data is a valuable national resource and a stra

tegic asset to the U.S. Government, its partner

s, and the public. Managing this data as an as

set and making it available, discoverable, and

usable – [in a word, open](principles/) – not o

nly strengthens our democracy and promotes effi

ciency and effectiveness in government, but als

o has the potential to create economic opportun

ity and improve citizens’ quality of life.

